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Abstract— This paper presents a ball-joint-like three-degree-
of-freedom (3-DOF) permanent magnet (PM) spherical actuator
which features a ball-shaped rotor with multiple PM poles and
a spherical iron stator with air-core coils. Torque output of this
PM spherical actuator is formulated analytically. Based on the
torque model, simulation result of the actuator torque variation
is presented. In addition, the effect of the stator iron on the
torque output is evaluated.

I. INTRODUCTION

Compared with conventional three-degree-of-freedom (3-

DOF) spherical motion mechanism by using several single-

axis actuators connected in parallel or in series, a spherical

actuator that can generate multi-DOF rotational motion in

one joint has the advantages of compact structure, fast re-

sponse and singularity free in workspace. Unlike single-axis

actuators, torque output of the spherical actuator has three

components. Because all torque components are dependant

on rotor orientation, obtaining actuator torque in terms of

input current to the motor coils becomes a complicated prob-

lem. Williams and Laithwaite [1] [2] have designed the first

2-DOF spherical induction motor. Magnetic field generated

by stator windings induces a current on the rotor surface,

and causes the rotor to incline. Davey et al. [3] derived

the torque model of this induction motor by integrating

the Maxwell stress moment over the spherical rotor surface

and proposed its use as a robot wrist [4]. The mechanical

complexity and the inherent poor servo characteristics of the

spherical induction motor led Lee et al. [5] to develop a

3-DOF spherical stepper based on the principle of variable-

reluctance. The torque output of a variable-reluctance spher-

ical motor (VRSM) depends on the current inputs as well

as the magnetic reluctance at the air-gaps between the rotor

and the stator poles [6]. The torque model of this motor

is obtained by differentiating coenergy with respect to the

angular displacement parameters. In the past decade, several

variations of spherical motors with a structure similar to

[5] have been studied. Wang et al. [7]–[10] have developed
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spherical actuators achieving 2/3-DOF motions. The rotor is

a completely magnetized ball. Coils are uniformly mounted

on the stator. The torque models of these spherical actuators

were obtained by using Lorentz force law. Chirikjian et al.
[11] have made a spherical stepper with a permanent magnet

(PM) pole rotor and a stator with an array of coils. Difference

in the symmetric layout of the rotor poles and the stator

poles allows stepping motion in three orientations. Kahlen

et al. [12] developed a spherical motor consisting of a rotor

sphere with 112 PM poles and an outer stator with 96 stator

windings. The torque produced by the stator winding was

calculated numerically. More recently, Lee et al. [13] [14]

have developed a spherical wheel motor that offers a means

to control the orientation of its shaft in an open-loop fashion.

In our previous study [15] [16], a research prototype of

PM spherical actuator has been developed as shown in Fig. 1.
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Fig. 1. Prototype of spherical actuator

TABLE I

STRUCTURE SPECIFICATIONS OF SPHERICAL ACTUATOR

Inner / outer stator radius 95 / 112.5 (mm)

Rotor radius 46.5 (mm)

Rotor core radius 23 (mm)

PM pole parameters α=40◦, β = 70◦

Number of rotor poles (PM) 8

Number of stator poles (coil) 24 / 2 layers

Number of coil turns 1027

Maximum tilting angle ±11◦

Maximal spinning torque 4 (Nm)

Maximal tilting torque 0.8 (Nm)
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The specification is listed in Table I. The key feature of this

spherical actuator is its flexible structure, i.e., the relationship

between the torque output and structure parameters can be

described so that optimum values of parameters can be se-

lected to achieve high torque output [17]. Furthermore, more

PM and coil poles may be incorporated, thereby increasing

the working range (up to 45◦) and motion resolution of the

actuator. In this prototype, the stator is made from aluminum

for preliminary study. As ferromagnetic materials such as

soft iron may reduce the magnetic energy loss and increase

the actuator torque, the objective of this paper is to derive

the torque output of PM spherical actuators with a laminated-

soft-iron stator by using Laplace’s equation and Lorentz force

law. Furthermore, the effect of stator iron on the actuator

torque output is analyzed. The modeling method can be used

for other similar designs.

II. WORKING PRINCIPLE

The working principle of the spherical actuator is illus-

trated in Fig. 2. The rare earth PMs (NdFeB) mounted along

the rotor equator can produce high flux density. The air-core

coils are assembled on the stator which can simplify the

torque model of the spherical actuator in a linear fashion.

By activating pairs of coils in two longitudinal directions, the

rotor can tilt in two orthogonal directions as shown in Fig.

2(a) and 2(b). Energizing all circumferential coils, the rotor

can spin about its own axis (Fig. 2(c)). Therefore, by varying

the input currents of coils, any desirable 3-DOF spherical

motion within the workspace can be achieved.
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Fig. 2. 3-DOF motion of spherical actuator

III. FORMULATION OF MAGNETIC FIELD

A. Assumptions

Assumptions that are useful for the formulation of mag-

netic field are listed as follows.

• The magnetic permeability of air space is the same as

that of free space.

• The magnetic permeability of stator iron is much greater

than that of air space.

• PMs are assumed to be ideal with field relationship

described by the linear second quadrant of a PM de-

magnetization curve.

B. Characterization of Rotor Space

In formulating the magnetic field of the rotor, we use

a generic spherical rotor model as shown in Figure 3 for

discussion. The PM poles are evenly spaced (with alternate

polarities) around the rotor equator, each of which has the

shape of a dihedral cone defined in terms of four parameters:

longitudinal angle α, latitudinal angle β, outer and inner

radii, Rr and Rb. With such an arrangement, the study of

rotor magnetic field can be divided into three parts.

1) Air Space outside the Rotor (Region 1): The air gap is

a linear homogeneous media with the absence of magnetiza-

tion, which can be characterized by a constitutive relation

B1 = µ0H1, (1)

where the subscript “1” denotes Region 1; B and H are

the magnetic flux density and field intensity; and µ0 is

permeability of free space with a value of 4π × 10−7H/m.

2) Within the Dihedral PM Rotor Poles (Region 2):

In this study, PMs are assumed to be ideal with field

relationship described by the linear second quadrant of a PM

demagnetization curve. Therefore, the magnetic property of

PM can be characterized by

B2 = µ0µmH2 + µ0M0, (2)

where µm is the dimensionless relative recoil permeability

of PM (typical value ranging between 1.05 and 1.20); M0 =
Brem/µ0 is the residual magnetization vector in A/m; and

Brem is defined as the remanence in Tesla. In spherical

coordinates, the residual magnetization vector of the pth PM

can be expressed as

M0 =





M0,r

M0,θ

M0,φ



 = (−1)p−1|M0|





cos(φ− αp) sin θ
cos(φ− αp) cos θ
− sin(φ− αp)



 , (3)

where αp = α/2 + 2π(p − 1)/P , p = 1, 2, ..., P . P is the

total number of PM poles. In this study, let P = 8. Note that

these equations are only valid within the range of

0 < φ− 2π(p− 1)

P
< α,

π

2
− β

2
< θ <

π

2
+
β

2
.

For the non-magnetized space in between poles on the rotor,

the residual magnetization is equal to zero.
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Fig. 3. Arrangement of rotor poles
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3) Rotor Core Made of Ferromagnetic Material (Region

3): The magnetic property of ferromagnetic material such as

soft iron can be characterized as

B3 = µ0µrH3, (4)

where µr is relative permeability of the ferromagnetic core.

C. Governing Equations

For an irrotational magnetic field,

∇× H = 0, ∇ · B = 0, (5)

where H is curl free and can be expressed in terms of a

scalar potential function Φ based on Helmholtz’s theorem:

H = −∇Φ. (6)

In spherical coordinates,

H = Hrer +Hθeθ +Hφeφ

=

[

−∂Φ

∂r
, − 1

r

∂Φ

∂θ
, − 1

r sin θ

∂Φ

∂φ

]T

, (7)

where er, eθ and eφ are respective unit vectors, Hr, Hθ and

Hφ are components of magnetic intensity. For Regions 1 and

3, the scalar potentials are governed by Laplace’s equations:

∇2Φ1 = 0, ∇2Φ3 = 0. (8)

The scalar potential Φ2 within Region 2 is expressed as

∇2Φ2 = ∇ · M0/µm, (9)

which is in the form of Poisson’s equation. With a symmetric

arrangement of rotor poles, the divergence of the residual

magnetization vector is equal to zero, i.e. ∇·M0 = 0. Thus,

the Poisson’s equation can be reduced to Laplace’s equation,

∇2Φ2 = 0.

D. Solution of Magnetic Flux Density

By using the governing equations and the characterization

of three regions, the magnetic field distribution surrounding

the PM rotor can be derived as follows.

B1,r =
3

8

√

35

2π

acµ0M0√
π

[5O4,6r
−6−4O4,5r

3] sin4θ cos4φ, (10)

B1,θ =−3

2

√

35

2π

acµ0M0√
π

[O4,5r
3+O4,6r

−6]sin3θcosθcos4φ,(11)

B1,φ =
3

2

√

35

2π

acµ0M0√
π

[O4,5r
3 +O4,6r

−6] sin3 θ sin 4φ, (12)

where M0 is the magnitude of the residual magnetization

vector M0. The three flux components B1,r, B1,θ and B1,φ

are defined in spherical coordinates as shown in Fig. 3, and

O4,6 =−(O4,3/O4,4R
9

r−O4,2/O4,1)/(R
9

r−R9

s)R
9

s,

O4,5 =(O4,3/O4,4R
9

r−O4,2/O4,1)/(R
9

r−R9

s),

O4,4 =[4(µr − µm)R9

b ],

O4,3 =[4µr + 5µm]O4,2/O4,1 −R6

b

O4,2 =4R6

r(R
9

r−R9

s)(µr−µm)R9

b−R6

bR
9

r{4R9

r(1 − µm) +

(5 + 4µm)R9

s},
O4,1 =4{[4+5µm]R9

r+[5−5µm]R9

s}(µr − µm)R9

b −R9

r

{4R9

r(1 − µm) + (5 + 4µm)R9

s}[4µr + 5µm].
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Fig. 4. Force activated by three components of the flux density

a and c in Eqns. (10)-(12) can be calculated with following

equations

a± bi≡
∫

2π

0

f(φ)e−imφdφ (m = 4 and m = −4), (13)

c/
√
π≡

∫ π

0

Sm
n sin2 θ[Pm

n (cos θ)]dθ, (14)

where

f(φ) = (−1)p−1 cos[φ− π

4
(p− 1)], p = 1, 2, ..., 8.

Sm
n =

√

2n+ 1

4π

(n−m)!

(n+m)!
.

E. Magnetic Flux Component for Torque Generation

The direction of the force generated by each component

of the flux density, B1,r, B1,θ and B1,φ can be determined

as shown in Fig. 4. The differential length segment dl of

the wire is tangential to the spherical surface at point O.

Note that only B1,r can produce a torque to change the rotor

orientation. B1,θ and B1,φ do not produce torque on the rotor

because the action lines of magnetic forces generated by B1,φ

and B1,θ pass through the rotor center.

IV. FORMULATION OF TORQUE MODEL

A. Coil Geometry

1
ζ

0
ζ

R0

Rotor
Stator

Coil Rr

R1

ds=rdrd ζ

Fig. 5. Section view of the conical air-core coil

An ideal air-core coil used in the spherical actuator is

illustrated in Fig. 5. The coil assumes a conical-shaped object
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Fig. 6. One loop of wire in the ith coil on the sphere

embedded in the stator shell to facilitate the formulation of

the actuator torque. Without loss of generality, the dimen-

sions of the coil (shaded region) can be specified by four

quantities: R0-center distance of the inner surface of the coil;

R1-center distance of the outer surface of the coil; ζ0-angular

diameter of the air-core and ζ1-angular diameter of the coil.

B. Torque on Differential Line Segment of Winding

Consider a differential line segment dl of the winding. As

shown in Fig. 5, the differential sectional area of dl can be

computed by

ds = rdrdζ. (15)

The current passing through this section area is Jrdrdζ,

where J is the current density in the section area of the

coil. According to Lorentz force law, the differential force

on the rotor caused by the interaction between magnetic field

of the PM-pole rotor and current carrying conductor dl is

dF= −Jrdrdζdl ×BIr(r, θ, φ)er, (16)

where er is the unit vector in the r-direction of spherical

coordinates. The negative sign indicates that the force im-

posed on the rotor by dl is the reaction force exerted by the

magnetic field on dl. It can be seen that the differential torque

generated by dl is the cross product of the moment arm

rer (the vector from rotor center to the differential winding

segment) and force dF, i.e.,

dTi = rer × [−Jrdrdζdl ×BIr(r, θ, φ)er]. (17)

C. Integration on Entire Coil Volume

Integrating the differential torque in Eqn. (17) within the

entire volume of the coil gives the torque of a single coil

under the magnetic field of PM rotor as

Tc = −J
∫ R1

R0

∫ ζ1

ζ0

{
∫

C

rBIr(r, θ, φ)dl

}

rdrdζ. (18)

The symbol

∫

C

denotes the line integral of the differential

torque along a circular loop of the winding that has a “wire”

section area of ds.

D. Solution to Torque Integral

With analytical expression of B1,r and Eqn. (18), the

actuator torque generated by the ith coil, denoted as Ti, can

be expressed explicitly using the ith coil-axis position θi and

φi with respect to the rotor frame, as well as the current input

Ji passing through this coil. For any rotor orientation, the

torque output can then be determined by the current input

uniquely. Assume that only one coil is mounted on the stator.

The spherical coordinates (θi, φi) is used to represent the

position of the coil in the rotor frame. One loop of winding

in the ith coil on the sphere is indicated in Fig. 6. The

differential length segment dl can be calculated as

dl = r sin ζdψ(sinψeθi − cosψeφi). (19)

By substituting magnetic field component B1,r of Eqn. (10)

and dl of Eqn. (19) into torque integral formula of Eqn. (18),

the torque output of a single coil can be obtained as

Ti = TcG(θi, φi)Ji (20)

where

Ti =[Tix, Tiy, Tiz]
T,

G(θi, φi)= [gx(θi, φi), gy(θi, φi), gz(θi, φi)]
T

= eφi(−4 sin3 θi cos4 φi cos θi−4 sin3 θi sin4 φi cos θi

+24 sin3θi cos2 φi sin2 φi cos θi) − eθi(16 sin3 θi

cos3 φi sinφi − 16 sin3 θi sin3 φi cosφi),

Tc =
15

8

√

35

2
µ0M0acRcGζ ,

Rc =O4,6Rc,1 +O4,5Rc,2,

Rc,1 =(R−2

0
−R−2

1
)/2,

Rc,2 =(R7

0
−R7

1
)/7,

Gζ =G
′′

ζ −
3G

′

ζ

4
,

G
′

ζ =1/5 sin5 ζ1−1/5 sin5 ζ0,

G
′′

ζ =1/5 cos4 ζ0 sin ζ0−1/15 cos2 ζ0 sin ζ0−2/15 sin ζ0

−1/5 cos4ζ1 sin ζ1+1/15 cos2ζ1 sin ζ1+2/15 sin ζ1.

The unit vectors eφi and eθi in spherical coordinates can be

represented in terms of Cartesian coordinates as

eφi = − sinφiex + cosφiey =





− sinφi

cosφi

0



 ,

eθi = cos θi cosφiex + cos θi sinφiey − sin θiez

=





cos θi cosφi

cos θi sinφi

− sin θi



 .

E. Torque Model of Full Set of Coils

Eqn. (20) represents the torque of a single coil. With N
coils on the stator, the torque model of the spherical actuator

with a complete set of coils can be obtained

T = TcQJ, (21)
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where J =
[

J1 J2 · · · JN

]T
represents currents passing

through N coils, and Q is defined to be the torque matrix

Q =





fx(θ1, φ1)fx(θ2, φ2) · · · fx(θN , φN )
fy(θ1, φ1) fy(θ2, φ2) · · · fy(θN , φN )
fz(θ1, φ1) fz(θ2, φ2) · · · fz(θN , φN )



 .

V. SIMULATION AND ANALYSIS

A. Simulation Result

The three torque components produced by a single coil can

be calculated from Eqn. (20). Let Brem = 1T, Rb = 15mm,

Rr = 45mm, Rs = 80mm, Rs = 80mm, ξ0 = 2◦, ξ1 = 15◦,

R0 = 45.1mm, R1 = 60mm and Ji =3A. The variation of

torque components Tx, Ty and Tz with respect to θ and φ
are presented in Fig. 7, where θ and φ are used to specify the

position of coil’s axis in the rotor frame. Because the tilting

motion of the rotor is constrained by the output shaft as

well as the spherical bearing which secures the rotor position

inside the stator, θ is defined in the range of [60◦, 120◦].
From Fig. 7(b), it can be seen that when coil axis is

at the rotor equator (θ = 90◦), only Tz will be produced,
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Fig. 7. Simulation of torque variation by a single coil

whereas Tx and Ty are equal to zero. This is coincident

with the simulation result in Fig. 7(a), 7(c) and 7(e). When

the coil axis shifts an angle away from the rotor equator as

indicated in Fig. 7(d) and 7(f), Tx and Ty are not equal to

zero. Furthermore, they have opposite directions when the

coil axis is at upper and lower hemispheres. There are eight

positive/negative ridges for the variation of Tz in φ direction,

which are caused by the eight alternatively magnetized PM

poles along the rotor equator. However, the variation of Tx

and Ty is not in phase with the poles arrangement, because

rotor coordinates are employed for the torque computation.

It can be verified that if stator coordinates are used for the

computation, eight ridges will appear for all three torque

components.

B. The Effect of Iron Stator on Torque Output

As the iron stator affects the magnetic field distribution

of PM rotor [18], it may also change the actuator torque

output. The following study is based on a fix-sized rotor

(Rr = 45mm). Let radii of the coil be fixed (R0 = 45.1mm,

R1 = 50mm) and stator size start increasing from 50mm.

From Eqn. (20), it is know that Rc = O4,6Rc,1 +O4,5Rc,2,

where O4,5 and O4,6 can be calculated from stator radius Rs.

The computed relationship between Rc and Rs is presented

in Fig. 8(a). It can be observed that the actuator torque is

larger with a smaller size of stator. Imagine an iron stator

with infinite size, which is equivalent to a stator made from

non-magnetic materials such as aluminium. Thus, when the

stator is made from non-magnetic materials, Rc is equal to

the lowest value in Fig. 8(a) (4.2×104mm4). The iron stator

with 50mm radius can increase the actuator torque by 60%.

The second study is based on a flexible coil, i.e., the

external radius of coil R1 is equal to the stator radius Rs.
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Fig. 8. Relationship between torque output and stator radius (Rc vs. Rs)
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Therefore, R1 will follow the change of Rs. The relationship

between R1 and Rs is plotted in Fig. 8(b). To analyze the

effect of iron stator, the relationship between R1 and Rs with

an aluminum stator is also calculated and presented with a

dotted line. From Fig. 8(b), it can be seen that the iron stator

does help to increase the actuator torque.

C. Ratio Selection of Rotor/Stator Radii

The previous study is based on a rotor with fixed size.

However, in actuator design, people normally fix the stator

size, and find the relationship between torque constant and

the ratio of rotor/stator radii. From this relationship, an

optimum ratio can be selected, and thus the rotor size can

be obtained. This approach can offer some advantages such

as:

• The optimization design of the actuator can be con-

sidered based on the performance of the whole system

including stator and rotor, instead of individual compo-

nents.

• The stator radius can be determined in the first place,

to satisfy the requirements of maximum actuator size in

different situations.

• The use of ratio between rotor and stator radii can be

regarded as a nondimensional method, so that it is able

to analyze the actuator performance without considering

the specific dimensions.
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x 10
5
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R
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4
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Fig. 9. Relationship between Rc vs. Rr/Rs

The relationship between Rc in torque constant and

Rr/Rs is illustrated in Fig. 9. The maximum value of Rc

happens at Rr/Rs = 0.85 approximately. This curve can

be explained in a physical perspective. When Rr/Rs is

very low, the rotor size is small, and thus the flux density

generated by the rotor is low. As a result the value of Rc

is very small. With the increase of Rr/Rs, Rc increases.

However, when Rr/Rs is larger than a certain degree, the

coil winding is smaller (R0 ≥ Rr and R1 = Rs). Therefore,

Rc and torque output of the actuator decreases.

VI. CONCLUSION

This paper studied the torque output of a 3-DOF PM

spherical actuator with a iron stator. The mathematic model

of the torque output was derived. The effect of the iron

stator on the actuator torque output was analyzed. It is

found that the employment of laminated iron for the stator

fabrication can increase the actuator torque up to 60%. In

addition, relationship between torque constant and rotor &

stator parameters was plotted according to the mathematic

models, which can facilitate the optimization design of the

spherical actuator.
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